5,317 research outputs found

    Evaluating the effects of microphysical complexity in idealised simulations of trade wind cumulus using the Factorial Method

    Get PDF
    The effect of microphysical and environmental factors on the development of precipitation in warm idealised cloud is explored using a kinematic modelling framework. A simple one-dimensional column model is used to drive a suite of microphysics schemes including a flexible multi-moment bulk scheme (including both single and dual moment cloud liquid water) and a state-of-the-art bin-resolved scheme with explicit treatments of liquid and aerosol. The Factorial Method is employed to quantify and compare the sensitivities of each scheme under a set of controlled conditions, in order to isolate the effect of additional microphysical complexity in terms of the impact on surface precipitation. At relatively low updraught speeds, the sensitivity of the bulk schemes was found to depend on the assumptions made with regards the treatment of droplet activation. It was possible to achieve a much closer agreement between the single and dual moment bulk schemes by tuning the specified droplet number concentration in the single moment scheme, suggesting that a diagnostic representation of droplet number may be an acceptable alternative to the more expensive prognostic option. However the effect of changes in CCN concentration were found to produce a relatively stronger effect on precipitation in the bulk schemes compared to the bin scheme; this is believed to be a consequence of differences in the treatment of drop growth by collision and coalescence. Collectively, these results demonstrate the usefulness of the Factorial Method as a model development tool for quantitatively comparing and contrasting the behaviour of microphysics schemes of differing levels of complexity within a specified parameter space

    The Statistical Approach to Quantifying Galaxy Evolution

    Get PDF
    Studies of the distribution and evolution of galaxies are of fundamental importance to modern cosmology; these studies, however, are hampered by the complexity of the competing effects of spectral and density evolution. Constructing a spectroscopic sample that is able to unambiguously disentangle these processes is currently excessively prohibitive due to the observational requirements. This paper extends and applies an alternative approach that relies on statistical estimates for both distance (z) and spectral type to a deep multi-band dataset that was obtained for this exact purpose. These statistical estimates are extracted directly from the photometric data by capitalizing on the inherent relationships between flux, redshift, and spectral type. These relationships are encapsulated in the empirical photometric redshift relation which we extend to z ~ 1.2, with an intrinsic dispersion of dz = 0.06. We also develop realistic estimates for the photometric redshift error for individual objects, and introduce the utilization of the galaxy ensemble as a tool for quantifying both a cosmological parameter and its measured error. We present deep, multi-band, optical number counts as a demonstration of the integrity of our sample. Using the photometric redshift and the corresponding redshift error, we can divide our data into different redshift intervals and spectral types. As an example application, we present the number redshift distribution as a function of spectral type.Comment: 40 pages (LaTex), 21 Figures, requires aasms4.sty; Accepted by the Astrophysical Journa

    A higher order perfectly matched layer formulation for finite-difference time-domain seismic wave modeling

    Get PDF
    We have developed a higher order perfectly matched layer (PML) formulation to improve the absorption performance for finite-difference time-domain seismic modeling. First, we outlined a new unsplit “correction” approach, which allowed for traditional, first-order PMLs to be added directly to existing codes in a straightforward manner. Then, using this framework, we constructed a PML formulation that can be used to construct higher order PMLs of arbitrary order. The greater number of degrees of freedom associated with the higher order PML allow for enhanced flexibility of the PML stretching functions, thus potentially facilitating enhanced absorption performance. We found that the new approach can offer increased elastodynamic absorption, particularly for evanescent waves. We also discovered that the extra degrees of freedom associated with the higher order PML required careful optimization if enhanced absorption was to be achieved. Furthermore, these extra degrees of freedom increased the computational requirements in comparison with first-order schemes. We reached our formulations using one compact equation thus increasing the ease of implementation. Additionally, the formulations are based on a recursive integration approach that reduce PML memory requirements, and do not require special consideration for corner regions. We tested the new formulations to determine their ability to absorb body waves and surface waves. We also tested standard staggered grid stencils and rotated staggered grid stencils

    High-dimensional decoy-state quantum key distribution over 0.3 km of multicore telecommunication optical fibers

    Get PDF
    Multiplexing is a strategy to augment the transmission capacity of a communication system. It consists of combining multiple signals over the same data channel and it has been very successful in classical communications. However, the use of enhanced channels has only reached limited practicality in quantum communications (QC) as it requires the complex manipulation of quantum systems of higher dimensions. Considerable effort is being made towards QC using high-dimensional quantum systems encoded into the transverse momentum of single photons but, so far, no approach has been proven to be fully compatible with the existing telecommunication infrastructure. Here, we overcome such a technological challenge and demonstrate a stable and secure high-dimensional decoy-state quantum key distribution session over a 0.3 km long multicore optical fiber. The high-dimensional quantum states are defined in terms of the multiple core modes available for the photon transmission over the fiber, and the decoy-state analysis demonstrates that our technique enables a positive secret key generation rate up to 25 km of fiber propagation. Finally, we show how our results build up towards a high-dimensional quantum network composed of free-space and fiber based linksComment: Please see the complementary work arXiv:1610.01812 (2016

    Using MODIS derived <i>f</i>PAR with ground based flux tower measurements to derive the light use efficiency for two Canadian peatlands

    Get PDF
    International audienceWe used satellite remote sensing data; fraction of photosynthetically active radiation absorbed by vegetation (fPAR) from the Moderate Resolution Imaging Spectroradiometer (MODIS) in combination with tower eddy covariance and meteorological measurements to characterise the light use efficiency parameter (?) variability and the maximum ? (?max) for two contrasting Canadian peatlands. Eight-day MODIS fPAR data were acquired for the Mer Bleue (2000 to 2003) and Western Peatland (2004). Flux tower eddy covariance and meteorological measurements were integrated to the same eight-day time stamps as the MODIS fPAR data. A light use efficiency model: GPP=? * APAR (where GPP is Gross Primary Productivity and APAR is absorbed photosynthetically active radiation) was used to calculated ?. The ?max value for each year (2000 to 2003) at the Mer Bleue bog ranged from 0.58 g C MJ?1 to 0.78 g C MJ?1 and was 0.91 g C MJ?1 in 2004, for the Western Peatland. The average growing season ? for the Mer Bleue bog for the four year period was 0.35 g C MJ?1 and for the Western Peatland in 2004 was 0.57 g C MJ?1. The average snow free period ? for the Mer Bleue bog over the four year period was 0.27 g C MJ?1 and for the Western Peatland in 2004 was 0.39 g C MJ?1. Using the light use efficiency method we calculated the ?max and the annual variability in ? for two Canadian peatlands. We determined that temperature was a growth-limiting factor at both sites Vapour Pressure Deficit (VPD) however was not. MODIS fPAR is a useful tool for the characterization of ? at flux tower sites

    Observations and comparisons of cloud microphysical properties in spring and summertime Arctic stratocumulus clouds during the ACCACIA campaign

    Get PDF
    Measurements from four case studies in spring and summer-time Arctic stratocumulus clouds during the Aerosol-Cloud Coupling And Climate Interactions in the Arctic (ACCACIA) campaign are presented. We compare microphysics observations between cases and with previous measurements made in the Arctic and Antarctic. During ACCACIA, stratocumulus clouds were observed to consist of liquid at cloud tops, often at distinct temperature inversions. The cloud top regions precipitated low concentrations of ice into the cloud below. During the spring cases median ice number concentrations (~ 0.5 L−1) were found to be lower by about a factor of 5 than observations from the summer campaign (~ 3 L−1). Cloud layers in the summer spanned a warmer temperature regime than in the spring and enhancement of ice concentrations in these cases was found to be due to secondary ice production through the Hallett–Mossop (H–M) process. Aerosol concentrations during spring ranged from ~ 300–400 cm−3 in one case to lower values of ~ 50–100 cm−3 in the other. The concentration of aerosol with sizes Dp > 0.5 μm was used in a primary ice nucleus (IN) prediction scheme (DeMott et al., 2010). Predicted IN values varied depending on aerosol measurement periods but were generally greater than maximum observed median values of ice crystal concentrations in the spring cases, and less than the observed ice concentrations in the summer due to the influence of secondary ice production. Comparison with recent cloud observations in the Antarctic summer (Grosvenor et al., 2012), reveals lower ice concentrations in Antarctic clouds in comparable seasons. An enhancement of ice crystal number concentrations (when compared with predicted IN numbers) was also found in Antarctic stratocumulus clouds spanning the H–M temperature zone; however, concentrations were about an order of magnitude lower than those observed in the Arctic summer cases but were similar to the peak values observed in the colder Arctic spring cases, where the H–M mechanism did not operate
    corecore